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Experiments on the propagation of linear and weakly nonlinear gravity waves over 
a rectangular submerged bar were undertaken through very careful measurements in 
a wave tank. Effects arising from the finite amplitude of the surface wave and those 
coming from the generation of vortices around bar edges were examined. 
Experimental data are compared with results of two theoretical models. The first 
model was derived from Takano (1960) and Kirby & Dalrymple’s (1983) work and 
the second model was developed by Devillard, Dunlop & Souillard (1988) using the 
renormalized transfer matrix introduced by Miles (1967). 

1. Introduction 
The propagation of surface gravity waves over submerged bars has been widely 

studied because of its practical importance in oceanography. Submerged bars may 
indeed provide a mechanism for coastal protection and for possible dune growth with 
erodible beds. More precisely, submerged bars are capable of protecting the shoreline 
from the full impact of incident waves through Bragg reflection (see e.g. Davies & 
Heathershaw 1984). On a fully erodible sand bed, a more subtle effect may lead to  
the growth of new sand bars in the seaward direction (see e.g. O’Hare & Davies 1990). 
The flow over natural bars is usually turbulent and coupled to the sand motion, 
therefore theoretical analyses prove to be rather difficult. I n  the laboratory, the 
study of the laminar flow over rigid bars although much simpler, can provide 
important insights into the study of complex problems such as the flow over natural 
bars. I n  this paper, we are concerned with the propagation of waves on a single 
submerged solid bar and our aim is a better understanding of the wave field over a 
single bar. 

The best known and most often quoted result of this type comes from Lamb (1932, 
Art. 176), who treated the case of long waves passing over a finite step, from one 
constant depth to another, as displayed in figure 1.  Expressions for the reflection and 
transmission coefficient were sought from the continuity of mass and surface 
elevation, though no information was obtained about the detailed nature of the flow 
in the vicinity of the step. The work of Lamb was extended by Jeffreys (1944) to the 
case of two sudden changes in depth, i.e. a bar. The transmission coefficient was 
found to be periodic in the ratio of the surface wavelength to  the obstacle width. 
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Water surface 

FIGURE 1 .  Sketch of a finite step from one constant depth to another. 

Bartholomeusz (1958) gave a more complete analysis of the continuity of potential 
and flux on the step, in the frame of the full potential theory. He formulated the 
integral equation for the horizontal component of the velocity U(y), a t  the step 
discontinuity (x = 0) but solved this equation in the limiting case of long waves and 
recovered the result of Lamb. 

A more complete treatment was given by Newman (1965a, b ) .  To understand this 
approach, we should recall that in any domain of constant depth, there exist two 
propagative modes, and infinitely many evanescent modes created at the step 
discontinuity. First, Newman (1965b) considered waves normally incident to a step, 
the depth on one side of the step being infinite. He obtained an integral equation for 
U(y) which corresponds to a particular case of that found by Bartholomeusz (1958). 
If U(y) is known, owing to the continuity conditions, the amplitudes of the modes can 
be computed on each flat part of the bottom, and therefore the transmission and 
reflection coefficients. Newman transformed the integral equation into an infinite set 
of linear algebraic equations by expanding U(y) in terms of the eigenfunctions 
describing the evanescent modes. Then the set of equations was solved numerically 
by keeping 80 non-propagative modes. In  the long-wave limit, the results obtained 
are consistent with those of Lamb (1932). Secondly, Newman ( 1 9 6 5 ~ )  extended the 
above results for the infinite step to the problem of the propagation of waves past 
very long symmetrical obstacles. The reflection coefficient is a highly oscillatory 
function of the obstacle length for waves of a given frequency. This approach was 
followed by Takano (1960) for an elevated rectangular sill and Kirby & Dalrymple 
(1983) for a trench. 

A more economical method was proposed by Miles (1967) for the case of a step 
discontinuity between two finite depths. A ‘scattering matrix ’ was defined relating 
the coefficients of the two propagative modes on each side of the step. The elements 
of the ‘scattering matrix ’ were determined by means of variational integrals, and the 
results obtained were in good agreement with those of Newman ( 1 9 6 5 ~ )  in the 
appropriate limit for the infinite step. The variational formulation of Miles was used 
by Mei & Black (1969) to study the scattering of waves by a rectangular obstacle in 
a channel of finite depth. The theory predicted an oscillatory reflection coefficient, 
and was in good agreement with Newman’s (1965 b )  results, a t  least for long and very 
short wavelengths. Also it was in good agreement with Olgivie’s (1960) long-wave 
theory approximation, and with Jolas’ (1960) experiments. More recently, Devillard, 
Dunlop & Souillard (1988) used the Miles’ matrix in the case of a set of successive 
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steps. Since this matrix relates the asymptotic plane-wave fields, the use of this 
method is valid if the non-propagative modes which are created a t  the step 
discontinuity are negligible when they reach the preceding or following steps. 
Devillard et al. (1988) used this method in the case of a bottom made of steps within 
this condition, i.e. in their case, the lengths of the steps were large enough to ensure 
the non-coupling between the evanescent modes created by two successive steps. 

In  this paper, we present an experimental and theoretical study of the propagation 
of normally incident surface gravity waves over a solid rectangular submerged bar. 
First, in $ 2 ,  after recalling the basic elements of the linear wave potential theory, the 
two theoretical models are presented. The first model, hereinafter referred to as the 
exact model, was derived from Takano (1960) and Kirby & Dalrymple’s (1983) work 
and the second model, hereinafter referred to as the approximated model, was 
developed by Devillard et al. (1988) using the renormalized transfer matrix 
introduced by Miles (1967). Then, in $3, the experimental techniques are described 
and in $4 the experimental results are presented and compared with the theoretical 
predictions. Reflection coefficient versus wave frequency, wave amplitude over the 
bars and flow visualizations are presented for increasing wave incident amplitude. 
Finally, in $5, the results are discussed and the validity of both models is examined. 
Our objectives in this work are to  determine for which conditions each model can give 
a good description of the experimental results and to examine the role played by 
nonlinear effects arising from the finite amplitude of the surface wave or coming from 
the creation of vortices around bar edges. 

2. Theoretical models 
The starting point of the two models described below is the linearized potential 

theory of gravity waves which we shall briefly recall here. We consider small- 
amplitude, monochromatic, irrotational motion of an ideal liquid with an equilibrium 
free surface at y = 0 over the bottom y = H ( x ) ,  sketched in figure 2. The departure 
of the water from its mean level ( y  = 0) is taken as r(x,t) where t is the time. Both 
the (complex) elevation 7 and the (complex) velocity potential @(x, y, t )  are assumed 
to have time-dependence @(x, y ,  t )  = $(x, y )  eiWt where w is the angular frequency, 
such that the motion is governed by Laplace’s equation : 

v = Re ( -eiWt V($)), V2@ = 0 in ~ ( x ,  t )  < y < H ( z ) ,  - co < x .c + co. ( I )  

The linearized free-surface and bottom conditions are : 

(a$/ay) + w2g-l$ = 0 on y = 0, ( 2 a )  

(a$/an) = o on y = H ( x ) .  ( 2 6 )  

The elevation 7 of the free surface is then given by: 

7 = Re ( - iwg-’$ eiwt). (3) 

The aim of both models described in the following section is their application to 
wave propagation over a smooth topography. Indeed, bars with rounded corners are 
used in the experiments (see $93 and 4) and computations involving smooth 
geometries are thus needed. To this end, the smooth bottom is discretized into a 
series of N narrow shelves, as shown in figure 2 ,  and the problem is formulated as the 
propagation of waves over a bed comprising small steps. As displayed in figure 2 ,  a 
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FIGURE 2. Sketch of the discretized smooth bottom. 

typical region labelled m (m = 0 to  N +  1) corresponds to a constant depth H,.  The 
depth is H ,  above regions m (m = 1 to N ) ,  H, for x < xo and H, for x > xN. 

2.1, Exact model 
In  the typical domain m of constant depth H,,  the complete solution of equations 
(1) and (2a, b )  may be written in the form: 

W 

$rn(X,Y) = A h e x p [ + _ i k , ( x - x m ) I ~ r n ( ~ ) +  X Bh,nexp [ + ~ r n , n ( ~ - ~ m ) I $ m , n ( ~ ) ,  (4) 
n=1 

where ik, and K , , ~  (n = 1,2,. . . , co) are solutions of the dispersion relation: 

K tan (KH,) = -u2g-', 

and x m ( y )  =F( ik ,y)  and $m,n(y) = F(Km,n,y) where: 

( 5 )  

F ( K )  = COS (K(H,-Y)). (6) 

Two propagating wave modes are described by the terms with coefficients A& and 
infinitely many non-propagative modes at x = x, are described by the terms with 
coefficients Bk,n  (n = 1 , 2 , .  . . , co). The functions xrn and $m,n  form a complete 
orthogonal set for each region m. 

Matching conditions must be applied to ensurc continuity of both fluid velocity 
and surface elevation between successive steps. They are the following a t  x = x, and 
0 < y < Min (H, ,  H,,,) : 

a$m/ax = a$m+l/axt., $m = $,+I. (7a, b )  

By truncating the non-propagative mode at some order n = P, the problem can be 
solved numerically. Following Takano (1960) and Kirby & Dalrymple (1983), each 
matching condition is multiplied in turn by all members of the complete orthogonal 
set {x,, $,* ; n = 1, . . . , P} and each resulting equation is integrated over the 
appropriate depth. The choice of the set of eigenfunctions to be used with each 
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matching condition depends on the direction of the step ( H ,  < H,+, or H ,  > Hm+l). 
The following 2(P+ 1)  equations can thus be written a t  x = xl: 

where the smaller of H, and H,+, corresponds to region 1 (index 1)  and the larger 
to region 2 (index 2). These equations are simplified by taking advantage of the 
orthogonality of the set of eigenfunctions {x,, $,? ; n = 1, . . . , P} for a given m. 

Suppose that the patch of bottom is discretized into N shelves (from x = xo to  
x = zN).  The resulting 2 (N+ 1)  (P+ 1 )  simultaneous equations can thus be solved 
numerically as a linear matrix equation for the computation of the unknown 
coefficients A; and Bh,n.  In  addition we must take into account the boundary 
conditions a t  the ends of the patch. It is assumed that a perfectly absorbing beach 
exists on the down-wave side therefore = 0. We may also take B;,n and 
B+N+l,n = 0 for all n, in order to satisfy the non-divergence of the potential. We also 
chose A; = 1. At the up-wave end of the patch, where the water depth is Ho,  the 
incident and reflected wave elevation (qi and qr) can be obtained from (3): 

At the down-wave end of the patch where the water depth is also H o ,  the transmitted 
wave elevation qt is given by: 

Tt = s-lwxN+l(0) IAN+11. (11) 

The reflection coefficient R (respectively transmission coefficient T) is defined as 
the quotient of the reflected (respectively transmitted) and incident wave amplitude. 
The reflection and transmission coefficients can thus be obtained, as follows: 

Since the model does not incorporate any mechanism of dissipation, it can also be 
verified numerically that the wave energy is conserved, i.e. 

(14) 

with ni = +( 1 + 2ki HJsinh (2k, H,))  for i = 0, N +  1. Equation (14) reduces to  R2 + T2 = 
1 when, as in the present experiments (see §4), the bed is of constant depth Ho on 
either side of the patch. 

R2 + mnN+l kobo k N + J  = 1,  

The wave amplitude over the patch is given by: 

T = K'wXrn(0) I$mlr (15) 

where $m is the potential for the region m. 
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We can also model the pathlines of the flow by calculating the trajectory position 
of each fluid element emitted from the middle of the bar. Numerically, we considered 
that the position of a fluid element a t  time t + At is a function of the position at  time 
t and is given by: 

X( t+At )  = X ( t ) +  V,(X(t), Y( t ) , t )At++yy,At2,  

Y ( t+At )  = Y ( t ) +  V,(X(t), Y ( t ) , t ) A t + h y A t 2 ,  
(16a) 

(16b) 
where Vx and V, are the Eulerian velocities a t  the position (X( t ) ,  Y ( t ) ) ,  yz and yy are 
the horizontal and vertical accelerations at this same point. They are given by: 

For a fixed wave frequency f, i.e. wave period T,, and fixed small wave amplitude A ,  
fluid elements passing position S just above the middle of the step were considered 
between time to and to + 200T, at the regular rate of 5 fluid elements per period. Then, 
using (16) and (17) with At = Tw/40, positions of each of these fluid elements a t  time 
to + 200T, were plotted. Similar computations were undertaken for different times to 
and for different wave frequencies and wave amplitudes. 

Further details of the theoretical model and further applications to different 
bottom topographies can be found in Rey (1991). 

2.2 .  Approximate model 
In  the exact model all wave modes, that is both propagating and non-propagating 
modes, are involved in the formulation of the matching conditions. I n  an alternative 
approach, Miles (1967) used the non-propagating modes only to renormalize the 
amplitude of the propagating modes. On the basis of an approximate variational 
method, he obtained a 2 x 2 scattering matrix that relates the propagating modes on 
adjacent shelves. Miles’ approach is in fact a variational improvement upon the 
plane-wave approximation. Since this matrix relates the asymptotic plane-wave 
fields, the use of this method for the prediction of the wave field over a series of steps 
is strictly valid only if the effect of the non-propagating modes, which are created at  
each step discontinuity, are negligible when they reach the preceeding or following 
steps. This condition was satisfied by Devillard et al. (1988) in a study of wave 
propagation over a bottom made of large steps ; in other words, they ensured that the 
lengths of the shelves were sufficiently large that no coupling between the non- 
propagating modes created a t  two successive steps could occur. Devillard et al. (1988) 
related the wave field at the (rightward) end of the mth shelf (x = 5,) to that a t  the 
(rightward) end of the (m+ 1)th shelf ( x  = x,+~) by means of the appropriate 
scattering matrix M, for the depth change in question, and a ‘rotating matrix’ R, 
allowing for wave propagation through a phase angle Om+, = km+l(xm+l-x,), as 
follows : 

with rm = (A;  exp (ik, z,) + A ,  exp ( -ikm 2,) xm(0),  

( 2 1 )  
- where 

Detailed expression of the matrix M, is given in Devillard et al. (1988, $ 3 . 2 ) .  

~ ~ ( 0 )  = 2 / 2 ( H ,  - (w2qp1)-l  sinh2 k,H,)-$F(ik, 0). 
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By repeated application of (18), the propagation of waves over a patch of steps can 
be determined from the product of the complete set of ( 2 x 2 )  transfer matrices 
T ,  = R ,  M,, for the region of topography in question, as follows: 

where 
N 

TN = n TN+,-,. 
1 

Suppose that the patch of bottom undulations is discretized into N shelves (from 
x = xo to x = x N )  and that, on either side of this patch, the bed is of constant depth 
H,. In  addition, it is assumed again that a perfectly absorbing beach exists on the 
down-wave side, such that no waves are incident on the patch from x > x N .  At the 
up-wave end of the patch, where the water depth is also H,,  the wave field may be 
represented by : 

r, = r, + r, = (A, exp [ik, x,] +B, exp [ - ik, x , ] )  xo(0), 52, = - i( !Pi - Y,). (24) 
It follows that the wave field at the down-wave end of the patch may be represented 
by : 

(25 1 r N + l  = rt = exp Lik0 x N + l l  X O ( O ) ,  52N+l  = -i yt' 

Hence, the boundary conditions at  both ends of the patch can be written: 

where t and r are defined as : t = rt/ri and r = rr/ri. The determinant of the matrix 
T N  is equal to 1, since the water depth is the same up-wave and down-wave of the 
patch of bottom undulations. Moreover, this formula implies that the wave energy 
is conserved since tt* + rr* = 1, as expected since the model does not incorporate any 
mechanisms of dissipation (the symbol * denotes a complex conjugate). Since T N  can 
be evaluated, the transmission and reflection coefficients respectively T and R, can 
be obtained from (26), as follows: 

R2 = rr* = l - t t* ,  

where lTNl is the norm of Froebenius of the matrix T N ,  i.e. the square root of the sum 
of the square of its coefficients. 

The wave amplitude over the patch of undulations can also be calculated. Above 
the (m+ 1)th shelf, the complex velocity potential I',+,(x) is given by the following 
relation which relates the complex vector a t  the beginning of the region to  the 
complex vector at  the location x: 

(28) 

Here R , ( x )  is the rotation matrix allowing for wave propagation through a phase 
angle Om+, = k ,+ l (x -xm) .  This computation may be made from step to step, starting 
with the complex vector: 

(30) [ -i( l-r)  1) 
and the values of r and t are those obtained from the computation described above. 
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2.3. Limitations of these models 

There are certain physical limitations of the computations performed in this work 
which arise both from approximations of the use of the linear potential theory of pure 
gravity waves and also from the approximations of the models. 

The limitations of the former kind may be stated first as a set of simple conditions 
on the various lengthscales in the problem (see Belzons, Guazzelli & Parodi 1988) : 

A k ,  AH;’, Ak-2H-3 0 + 1 .  (31) 

Moreover, we must verify that the effect of surface tension can be neglected. The 
last physical limitation remains the dissipation which is ignored in the models. 

The additional limitation of the exact model comes from the truncation of the 
evanescent modes. It has been numerically verified that in the range of frequencies 
and depth discontinuities experimentally investigated here, the results for the wave 
field rapidly converge as the number P of evanescent modes is increased. Typically, 
the limit is reached, for the reflection coefficient, when number P z 10, the value 
used in the computation presented here in $4. 

As far as the approximate model is concerned, the limitations are of two kinds. 
First, the Miles’ scattering matrix is derived from a variational approximate method 
(Miles 1967). Secondly, the use of this scattering matrix for a series of steps is only 
valid if the successive matrices remain uncoupled via the evanescent modes from one 
step to another. If this method is applied for a discretized bed. we should verify that 
the error introduced by the evanescent modes coupling can be neglected. For a finely 
discretized bed, the amplitude of the evanescent modes diminishes when the number 
of shelves increases as the height of each small step decreases. Unfortunately, as the 
error a t  each step decreases, the accumulation of the errors increases as the 
discretization involves more steps. As a result, no general conclusion can be obtained 
and the use of this method is far from being justified. However, in some specific cases, 
the use of the approximate method can be a posteriori validated by a comparison 
with the exact method or with approximate analytical models (O’Hare & Davies, 
unpublished work). In  the present paper, this approximate method was used for a 
bar with discretized rounded corners and compared with the exact model (see cj$4 and 
5 ) .  These comparisons exhibit the error involved in calculating the wave field with 
the approximate model. Since the error arises from an approximate treatment of the 
evanescent modes i t  is expected to be of particular importance in the vicinity of the 
overall change in depth i.e. around the bar’s corners. 

3. Experimental techniques 
3.1. The wave tank 

The experiments were carried out in a glass-walled wave tank (length = 4.70 m and 
width = 0.39 m), shown in figure 3. The bottom of the tank was levelled so that its 
deviation from the horizontal plane was within 1 mm, and the width of the channel 
was uniform to within 1 mm. Water depths were determined tJo within an estimated 
0.2 mm. For a distance of 1.80 m up-wave of the bar and between its down-wave end 
and the beach, the bed was flat and the water depth constant (Ha) .  In  all of the 
experiments, the water depth H ,  was 4 cm. 

In order to study the influence of the length of the bar, bars with the same height 
( H  = 2 cm) and with different lengths ( L  = 8, 16, 24 cm) were first used. In  order to 
study the influence of frequencies and amplitudes of the wave, a bar with given 
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FIGURE 3. Schematic diagram of the wave tank showing the position of the wave generator, the 
absorbing beach, the carriage and the linear detector in relation to the submerged bar. 

dimensions ( H  = 2.5 cm, L = 4.5 cm) was then used. For this last bar, it was possible 
to substitute the sharp corners by rounded corners (radius = 2 mm) and therefore to 
study the influence of corner shape on the flow. 

3.2. Wave measurements 
Measurements of the wave elevation r (x , t )  were made with an absolute accuracy 
better than 40 pm using an optical detection technique. This consisted of a LASER 
beam normally incident on the free water surface. The diffusion spot on the water 
surface was viewed obliquely and focused on to a linear detector (a 256 pixel-linear- 
camera) which measured the displacement of the image spot. The reading of the 
linear detector was synchronized with the wave generator and data accumulation 
over several periods (typically 10) of the wave generator were controlled by the 
Apple IIe microcomputer. The optical devices and the linear detector were mounted 
on a carriage which could slide along the top of the tank on two rails. The motion of 
the carriage was controlled through the microcomputer by a stepping motor ensuring 
a great reproducibility of the measuring positions. The smallest available 
displacement corresponding to one step was 0.0456 mm. 

From records of the wave elevation q(x, t )  obtained at position x along the tank, 
the wave amplitude A ( x )  was obtained a t  each position from the relation: 

(32) 
where @(x) is the phase of the wave (the reference phase being given by that of the 
wave generator). To check the linearity of the wave, we also examined the wave 
elevation more precisely by fitting it to the relation : 

r (x ,  t )  = 44 cos (@t+ qw), 

q(x, t )  = C A n ( x )  cos (nut+ #n(x)), (33) 

and thus obtaining the amplitudes An(x)  and phases @n(x) of the fundamental wave 
and its harmonics. 

For any given frequency, we obtained the reflection coefficient R (defined as the 
quotient of the reflected and incident wave amplitudes) by measuring the rate of 
standing waves between the wave generator and the beginning of the variable 
bottom. The interference of the reflected and incident waves induces a modulation 
of the resulting wave amplitude A ( x )  which varies between A,,, (proportional to 
1 +R) and Amin (proportional to 1 -R). Therefore, the rate of the stationary wave 
is RSW = Amax/Amin = (1 +R)/( l  -R) and thus R can be deduced. 

Measurements have been performed a t  approximately half a surface wavelength 
from the start of the bar so that the non-propagative modes died out. We typically 
made 40 measurements of the wave amplitude along a surface wavelength in order 
to obtain the rate of the stationary wave. Wave amplitudes were also measured over 
the bar from the up-wave to the down-wave regions. 

n 
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Wave-generator eccentricity : 

0 1  
1. .. 

0 1 2 3 4 5 6 
Frequency (Hz) 

FIQURE 4. Efficiency rate of the wave generator : produced wave amplitude versus frequency for 
different position of the eccentric (eccentric position = 1, 2, 3, 4 and 5). 

For additional details of the equipment and experimental methods see Belzons 
et al. (1988). 

3.3. The 'wave generator 

At one end of thc wave tank, a piston-type wave generator created a monochromatic 
sinusoidal wave of amplitude A,(x) : v i ( x ,  t )  = A, (x )  cos ( kx -w t ) .  The vertical paddle 
of the wave generator was driven by a microstepping motor and the motor monitored 
by an Apple IIe microcomputer. This generator was made of a roller mounted on an 
eccentric which could slide between two parallel bars. These bars were parallel to the 
paddle on connecting arms and the whole assembly could slide only longitudinally. 
This system ensured a perfect sinusoidal motion of the paddle when the motor 
rotated at  frequency f. The wave frequency f = w/2n ranged between 0.7 and 6 Hz. 
The frequency was determined to an accuracy better than 0.0001 Hz. Since we 
performed a systematic study of frequency versus wave amplitudes, we scaled the 
wave amplitude produced at  the location of the bar with frequency for different 
positions of the eccentric. This gives the rate of efficiency of the wave generator as 
shown in figure 4. The efficiency of the wave generator is poor a t  low and high 
frequencies for all the different positions of the eccentric. 

3.4. The beach rejection 

At the other end of the tank, a 12" slope rubberized-fibre wave-absorbing beach and 
a reservoir filled with the same absorbing material were built to prevent waves from 
being back-reflected onto the variable bottom. The length of the beach was L, = 

70 cm, the volume of the reservoir was VR = 100 1. Figure 5 shows the reflection 
coefficient for the beach, for which wave measurements were made on a flat bottom 
having the same depth as the mean depth used in the experiments. The measurements 
were made at the same location in the wave tank to ensure that the reflected waves 
were damped by the viscosity in the same way. The beach reflection coefficients are 
of the order of R =0.084.16  below 2Hz.  Above 2 Hz, the beach reflection is 
negligible. In the low-frequency range, the beach back-scattering introduces 
uncertainty into values of the reflection coefficient. Davies & Heathershaw (1983) 
have shown that the true reflection coefficient R, is estimated in the experiments to 
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FIQURE 5. The reflection coefficients of the beach with H ,  = 4 cm corresponding to the situation 

of the experiments of $4. 

within a range of uncertainty around the measured value R given by R, = RfR,, 
where R,  is the measured reflection coefficient of the beach. We shall discuss the back 
reflection by the beach in $84 and 5.  

3.5. Flow visualizations 
In order to observe the flow pathlines down-wave of the bar, we injected dye (an 
aqueous solution of potassium permanganate) in the flow on the top middle part of 
the bar and observed the fluid motion with a camera or a video camera through the 
channel sidewalls. I n  order to avoid flow perturbation, the dye was injected in the 
flow through a porous metal material, giving a negligible velocity of injection. The 
dye was convected toward the sharp corner of the bar by the drift velocity (mass 
transport) and then observations were made. A systematic study of the pathlines 
around sharp or rounded corner bars is discussed in $4.3 across variations of the 
incident wave amplitude and wave frequency. 

4. Experiments 

4.1.1. Influence of the length of the bar 
Figures 6, 7 and 8 display plots of the reflection coefficient R versus the wave 

frequency f, for bars with a given height H = 2 cm and with three different lengths 
L = 8, 16,24 cm, i.e. LIH = 4, 8, 12. The position of the eccentric was kept constant 
during these sets of experiments (position 1) ensuring small wave amplitudes. The 
prominent feature is the oscillatory nature of the reflection coefficient resulting from 
the finite length of the bar. The number of oscillations increases with the length of 
the bar. 

Comparison with the exact model and the approximated model is also made in 
these figures. The full lines represent the exact model numerical computation taking 
into account 10 evanescent modes. The dotted curves represent the approximated 
model numerical computation using the Miles’ transfer matrix. The approximated 
solutions are systematically slightly shifted toward the lower frequencies compared 

4.1. Reflection coeflcients 
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FIQURE 6. Results for the reflection coefficient of a bar with height H = 2 cm and length L = 8 cm. 
The water depth is H, = 4 cm. The position of the eccentric is 1 for all frequencies. 0, experimental 
data;  -, exact model computation taking into account 10 evanescent modes; ---, approximate 
model computation using the Miles’ transfer matrix. 
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FIQURE 7.  Results for the reflection coefficient of a bar with height H = 2 cm and length L = 16 cm. 
The water depth is H ,  = 4 cm. The position of the eccentric is 1 for all frequencies. 0, experimental 
data;  -, the exact model computation taking into account 10 evanescent modes; ---, 
approximate model computation using the Miles’ transfer matrix. 

with the exact solutions but the frequency shift is lower tha’n 0.1 Hz. We observe 
that the accuracy of experiments does not allow us to discriminate between the two 
solutions which are both in good agreement with the experimental data within 
experimental error, in particular regarding the maxima and minima of the 
oscillations. The amplitudes of the experimental oscillations are slightly lower than 
both theoretical solutions. This is believed to be due to the absence of dissipation in 
both models. 

We should also mention that the theoretical models presented here are in good 
agreement with that developed by Mei & Black (1969). The results obtained here 



Surface gravity uiaves over a rectangular submerged bar 465 

0.4 1 

0.3 

0.1 

0 1 2 3 4 5 6 

Frequency (Hz) 

FIGURE 8. Results for the reflection coefficient of a bar with height H = 2 cm and length L = 24 cm. 
The water depth is H,, = 4 cm. The position of the eccentric is 1 for all frequencies. 0, experimental 
data ; -, exact model computation taking into account 10 evanescent modes ; ---, approximate 
model computation using the Miles’ transfer matrix. 
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FIGURE 9. Results for the reflection coefficient of a sharp corner bar with height H = 2.5 cm and 
length L = 4.5 cm. The water depth is H ,  = 4 cm. 0,  eccentricity 1; A, eccentricity 1.5; ., 
eccentricity 2 ;  0 ,  eccentricity 2.5; A, eccentricity 3 ;  -, the exact model computation taking 
into account 10 evanescent modes, ---, approximate model computation using the Miles’ transfer 
matrix. 

Frequency (Hz) 

correspond exactly to the cases studied by these researchers and shown in figure 2 of 
their paper. 

4.1.2. InJluence of the incident wave amplitude and bar corner shape 
The influence of the incident wave amplitude has been studied for two bars with 

given dimensions ( H  = 2.5 cm, L = 4.5 cm) with two different corner shapes : the first 
bar has sharp corners while the second has rounded corners of radii 2 mm. Plots of 
the reflection coefficients versus frequency for five different wave generator eccentric 
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FIGURE 10. Results for the reflection coefficient of a rounded corner bar with height H = 2.5 crn, 
length L = 4.5 crn and corner radius = 2 mm. The water depth is H ,  = 4 cm. Key as for figure 9. 

positions are displayed in figures 9 and 10, for a bar with sharp corners and rounded 
corners, respectively. 

Both cases show oscillations of the reflection coefficient versus the frequency 
resulting from the finite length of the bars. Within experimental error, there is a 
small difference between experimental data for different incident waves amplitudes 
(different eccentric positions) for the sharp corner bar. In that case, the experimental 
data for large incident amplitude were shifted toward low frequency and the 
frequency shift is about 0.1 Hz. No such effect is observed for the rounded corner bar. 
For small incident wave amplitude, there is no significant difference between 
experimental data for sharp or rounded corner. 

The full lines represent the exact model numerical computation taking into 
account 10 evanescent modes and the dotted curves represent the approximated 
model numerical computation. In  both computations each rounded corner with a 
2 mm radius was discretized into 10 steps of equal height. As mentioned previously 
in $4.1.1, for the sharp corner bar the approximated solutions are slightly shifted 
towards the lower frequencies compared with the exact solutions but the shift is 
lower than 0.1 Hz. For the rounded corner bar, no detectable frequency shift 
between the approximated and exact solutions was observed. I n  this latest case, 
however, the amplitudes of the oscillations for the approximated solutions were 
lower than those for the exact solutions above 3 Hz. 

Both theoretical models, although giving slightly different curves, are in good 
agreement with the experimental data, within experimental error. 

4.2. Behaviour of the wave amplitude over and on either side of the bar 
I n  order to obtain a general understanding of the wave field, series of measurements 
for three different significant frequencies were made of the wave elevation as 
explained in (33) over the two previous bars presented in $4.1.2 (sharp and rounded 
corner bars) and on either side of them. 

Plots of the fundamental wave amplitude and the first harmonic wave amplitude 
over both bars and on either side of them are displayed for increasing incident wave 
amplitude (increasing eccentric position) in figures 11-16. The full lines represent the 
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FIGURE 11. Variation of the fundamental and first harmonic wave amplitude above the sharp 
corner bar (height H = 2.5 cm, length L = 4.5 cm and water depth H ,  = 4 cm) at  frequency 1 Hz 
for 0, eccentricity 1 ; A, eccentricity 2;  B, eccentricity 3; -, the exact model computation 
taking into account 10 evanescent modes ; ---, approximate model computation using the Miles' 
transfer matrix. 
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FIGURE 12. Variation of the fundamental and first harmonic wave amplitude above the rounded 
corner bar (height H = 2.5 cm, length L = 4.5 cm, corner radius = 2 mm and water depth H ,  = 
4 cm) a t  frequency 1 Hz. Key as for figure 11. 
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FIQURE 13. Variation of the fundamental and first harmonic wave amplitude above the sharp 
corner bar (height H = 2.5 cm, length L = 4.5 cm and water depth H ,  = 4 cm) a t  frequency 2.2 Hz. 
Key as for figure 1 1 .  
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FIGURE 14. Variation of the fundamental and first harmonic wave amplitude above the rounded 
corner bar (height H = 2.5 cm, length L = 4.5 cm, corner radius = 2 mm and water depth H, = 
4 cm) a t  frequency 2.2 Hz. Key as for figure 11. 
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FIGURE 15. Variation of the fundamental and first harmonic wave amplitude above the sharp 
corner bar (height H = 2.5 cm, length L = 4.5 cm and water depth H ,  = 4 cm) at frequency 3.1 Hz. 
Key as for figure 11. 
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FIGURE 16. Variation of the fundamental and first harmonic wave amplitude above the rounded 
corner bar (height H = 2.5 cm, length L = 4.5 cm, corner radius = 2 mm and water depth H ,  = 
4 cm) at frequency 3.1 Hz. Key as for figure 11. 
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exact model numerical computation taking into account 10 evanescent modes and 
the dotted curves represent the approximated model numerical computation using 
the Miles’ transfer matrix. In both computations each rounded corner was discretized 
into 10 steps of equal height. Let us note that in both computations each incident 
wave amplitude was scaled to the same averaged value as the fundamental wave 
experimental data ; each corresponding harmonic wave experimental data were 
multiplied by the same scaling quantity. 

At low frequency (f = 1 Hz, figures 11 and 12), the reflected fundamental wave is 
large (the reflection coefficient is about 0.35 as shown in figures 9 and 10) and 
therefore the interference of the reflected and incident waves induces a large 
modulation of the fundamental amplitude A,(x) up-wave of the bars. Down-wave of 
the bars, a modulation of A,(x)  is also observed owing to the interference between the 
transmitted wave and the beach back reflected wave. Within experimental error, no 
difference is observed between data for the three different incident wave amplitudes 
(eccentric position = 1, 2 and 3, i.e. wave amplitude = 0.1, 0.4 and 0.6 mm). On the 
contrary, for both studied bars, the influence of the incident wave amplitudes 
(eccentric positions) has a strong effect on the first harmonic wave amplitude A,(x) .  
The relative importance of the first harmonic wave amplitude increases with the 
incident wave amplitude. Up-wave of the bars, a large modulation of the first 
harmonic amplitude A,(x) is observed. For the first harmonic wave frequency (2 Hz), 
the reflected wave is large (reflection coefficient of about 0.30 as shown in figures 9 
and 10) and therefore, the interference of the reflected and the incident waves induces 
large modulation of the first harmonic amplitude A , ( x )  up-wave of the bars. Down- 
wave of the bars, A2(x)  remains constant. Indeed, the beach reflection is negligible for 
the first harmonic wave frequency (2 Hz). Within experimental error, the only small 
difference between experimental data for sharp or rounded corner bars is that the 
values ofA,(x) are lower for sharp corners than for rounded ones. This behaviour can 
be interpreted as a slightly larger viscous attenuation in the sharp corner case. I n  
both cases, the exact model numerical computation follows the general trend of the 
experimental data of A , @ ) ,  particularly in respect of the modulation up-wave of the 
bars. Down-wave of the bars, the agreement is not as well obtained. The modulation 
of A, (x )  in this region is due to the interference between the transmitted wave and 
the beach back reflected wave. Moreover, the values of the experimental data in this 
region remain significantly lower than those of the theoretical curve. This discrepancy 
is believed to be due to the absence of the dissipation in the model. Good agreement 
is obtained between the approximated and theoretical models far from the bars. At 
the bar edge, the approximated model curve is discontinuous. 

For the medium range frequency (f = 2.2 Hz, figures 13 and 14), the reflected wave 
is still rather large (the reflection coefficient is about 0.15 as shown in figures 9 and 
10) and therefore the interferences of the reflected and incident waves induces a 
rather large modulation of the fundamental amplitude A,(x) up-wave of the bars. 
Down-wave of the bar, no significant oscillation is observed, signifying the absence 
of beach reflection for this frequency. A significant difference is observed between the 
data for different incident wave amplitudes (0.4, 0.9 and 1.4 mm). An increase of 
incident wave amplitude induces a decrease of the values for A, (x ) .  Up-wave of the 
bar, the modulation of the first harmonic amplitude A , @ )  is very weak because, for 
the first harmonic wave frequency (4.4 Hz), the reflected wave is small (reflection 
coefficient of about 0.10 as shown in figures 9 and 10). Over the bars and on its down- 
wave side, a large production of first harmonic amplitude A,(x)  is observed. Farther 
down-wave of the bars, A,(x) rapidly decreases because of the strong viscous 
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down-wave step of the sharp corner bar with a wave frequency 
f = 1 Hz and an eccentric position = 1 .  The left-hand side represents experimental visualizations 
and the right-hand side numerical computations. Tn (a )  the flow is upstream and in ( b )  the flow is 
downstream. 

attenuation a t  4.4 Hz. This production of first harmonic increases while increasing 
the incident wave amplitude. Within experimental error, no significant difference is 
observed between experimental data for sharp or rounded corner bars. Experimental 
data for A,(x) can be compared with results of the exact and approximated model. 
The remarks made above are again applicable as far as the good agreement between 
the measurements and the exact solution and the poor agreement in the vicinity 
of the bars for the approximated solution. As expected, the agreement between the 
measurements and the exact solution is better for small wave amplitude. 

For the higher frequency (f= 3.1 Hz, figures 15 and 16), the reflected wave is 
rather small (the reflection coefficient is about 0.10 as shown in figures 9 and 10) and 
therefore a rather small modulation of the fundamental amplitude A,(%) is observed 
up-wave of the bars. Down-wave of the bar, no significant oscillation is observed, 
signifying again the absence of beach reflection for this frequency. The envelope of 
A, (x )  presents a regular decrease owing to the strong viscous dissipation for this 
frequency. Up-wave of the bar, no modulation of the first harmonic amplitude A,(%) 



472 V.  Rey,  M .  Belzons and E .  Guazzelli 

1 6 5 4 3 
X 

Y 

to = 0.6T, 

4 
7 6 5 4 3 

X 

FIGURE 18. Flow pathlines over the down-wave step of the sharp corner bar with a wave frequency 
j = 3.1 Hz and an eccentric position = 1. The left-hand side represents experimental visualizations 
and the right-hand side numerical computations. In (a )  the flow is upstream and in (b)  the flow is 
downstream. 

is observed, showing that the reflected wave is small. Over the bar and on its down- 
wave side, a small production of first harmonics A , ( z )  can be detected. However, 
farther down-wave, A,(x)  rapidly decreases because of the strong viscous attenuation 
at 6.2 Hz. Within experimental errors, no significant difference is again observed 
between data for the two different bars. For the two different bars, the exact model 
numerical computation follows the general trend of the experimental data of A,(%). 
However, the strong viscous attenuation is not taken into account by the model. 
Again poor agreement in the vicinity of the bars is obtained for the approximated 
model. 

4.3. Visualizations 
A systematic study of flow pathlines over the down-wave step of the bar was 
performed to  characterize separately the influence of the shape of the bar corners, of 
the frequency and of the amplitude of the incident wave. Experiments presented here 
correspond to the cases studied in 54.2 for the two significantly different frequencies 
f =  1 and 3.1 Hz. 



Surface gravity waves over a rectangular submerged bar 473 

FIGURE 19. Flow pathlines over the down-wave step of the sharp corner bar when the flow is 
upstream with a wave frequency f =  1 Hz for increasing incident wave amplitude (eccentric 
position = 2(a ) ,  and 3(c)). 

For the sharp corner bar, figures 17 and 18 show the experimental results for small 
incident wave amplitude (eccentric position = 1) and the exact model numerical 
computations. For small frequency (f = 1 Hz, figure 17), during the wave half-cycle, 
when the flow is upstream, a vortex is generated a t  the edge of the step ; during the 
following half-cycle when the flow reverses, a second vortex appears. These vortices 
are small features attached to the step (few mm) and are not symmetrical. Despite 
the lack of vorticity in the model, the numerical computation follows quite closely 
the general trend of the experiments. For higher frequency ( f =  3.1 Hz, figure 18), 
the vortices are extremely small and the pathlines remin limited along the down- 
wave vertical path of the bar and the top of the bar. The numerical computation fails 
to represent the experiments at high frequencies. This will be discussed in the 
following section. 

When the incident amplitude is increased (figure 19), the size of the half vortices 
increases (up to  5 mm in the case of frequency 1 Hz). After a complete wave cycle, 
a complete vortex is formed, and is then shed into the flow. For rounded corners 
(figure 20), pathlines subsist only along the down-wave vertical part of the bar and 
the top of the bar. 
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FIGURE 20. Flow pathlines over the down-wave step of the rounded corner bar when the flow is 
upstream with a wave frequency f =  1 Hz for increasing incident wave amplitude (eccentric 
position = 1 (a) ,  2 ( b )  and 3 ( c ) ) .  
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5. Discussion 
Before the experiments were carried out, we verified that we were dealing with 

pure monochromatic gravity waves. Owing to the possibility of resolving very small 
wave amplitudes with the experimental system, we examined the conditions (31) 
expressing the limitations in the linear potential theory. In  the experiments 
described in $4, the wave steepnesses Ak were in the range 0.002-0.06, the relative 
amplitudes AIH in the range O . O O M . 0 9  and the Ursell parameter Ak-2H-3 in the 
range 0.04-0.63. It should also be noted that in the frequency range and water depth 
of interest, the effect of surface tension can be neglected. This was experimentally 
confirmed through the measurement of the wave phase velocity on a flat bottom. 
Another criterion for the models is that the fluid should be potential everywhere. 
This requirement is not well satisfied especially in the case of bars with sharp corners 
and for rather large incident wave amplitude. It is shown in figures 17,18 and 19 that  
vortices were generated down-wave of the bar. For large incident wave amplitude 
(figure 19) the vortices were eventually shed into the flow. In  addition, for large 
incident wave amplitude, the wave field is no longer linear. Therefore, the harmonic 
content of the wave field was investigated as described in $4.2. The experiments of 
$4.2 revealed that up to  30% of the wave elevation was in the first harmonic 
frequency in the worst cases resulting from first harmonic production over the bar 
(see figures 11-16). Finally, as mentioned previously, the dissipation which can be 
strong at high frequency is not taken into account by the theoretical models. The 
weak vorticity, as well as the dissipation and the nonlinearity of the wave field, leads 
to small discrepancies between the theoretical linear potential models and the 
experiments. 

For a given bar, the reflection coefficient has been seen to be strongly dependent 
on wave frequency showing maxima in alternation with almost zero minima, as 
theoretically expected (see figures 6-10). Within experimental error, in the case of a 
bar with sharp corners, the effect of an increase of the incident wave amplitude is 
only significant in the vicinity of the first minimum which in that case is slightly 
shifted towards low frequency as can be seen in figure 9. For the rounded corner bar 
for which the vorticity is diminished, no such effect is observed. We may also notice 
that above the frequency of the minimum, the experimental points for the different 
incident wave amplitudes in the case of rounded corners are significantly lower and 
less dispersed than in the case of sharp corners. I n  this almost linear and potential 
regime, the exact model is in fairly good agreement with the experimental data. We 
must also note that the approximated model curve is following quite closely the 
exact model curve (see figures 6-10). In  the sharp corner bar experiments of $4.1, the 
lengths of the bars are large enough to ensure a non-coupling of the evanescent mode 
between the two steps of the bars. Therefore, the approximated model is in good 
agreement with the experimental data. It is easy to put into evidence the error 
induced by this approximation by diminishing the bar length, all other parameters 
being kept constant. A small shift between the exact model curve and the 
approximated model curve was already noticed in figures 6-8 ($4.1.1). This effect 
increases slightly while diminishing the bar length from L = 24 to 8 cm. Indeed, for 
I, = 8 cm (figure 6) the frequency shift between the two curves is about 0.05 Hz. A 
more significant discrepancy between the exact model and the approximated model 
can be obtained when the bar length is reduced from 8 cm to 4 , 2  and 1 ern as shown 
in figure 21. The shift to lower frequency of the approximated model curves increases 
as the bar length is diminished and goes up to 0.2 Hz for L = 1 cm. Therefore the 
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FIGURE 21. Numerical results for the reflection coefficient of a bar with height H = 2 cm and length 
L = 4, 2 and 1 cm. The water depth is H,, = 4 cm. -, exact model computation taking into 
account 10 evanescent modes ; ---, the approximate model computation using the Miles' transfer 
matrix. 
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good agreement of the approximated model with the experimental data in the case 
of the rounded corner bars is a t  first sight surprising. In  that case, the rounded 
corners were discretized into steps of small height and length and the effect of the 
coupling of the evanescent modes generated a t  each step could not be a priori 
neglected. However, it  seems that in that specific situation involving a small number 
of steps, the accumulation of the errors does not lead to  such a dramatic discrepancy. 

The experimental behaviour of the fundamental wave amplitude over and on 
either side of the bar has revealed it to be slightly dependent on the incident wave 
amplitude a t  least for the intermediate (2.2 Hz) and the highest frequencies 
investigated (3.1 Hz). The exact model numerical computations follow the general 
trend of the experimental data for the fundamental wave amplitude. Discrepancies 
arise from the beach back reflection down-wave of the bars for low frequency (figures 
11 and 12) and from the strong viscous attenuation a t  high frequency (figures 15 and 
16). Nonetheless, the approximated model fails to represent the wave amplitude in 
the vicinity of the bar. In  that case, the computed wave amplitude exhibits a 
discontinuity a t  the abcissa of the bar corners. This discontinuity increases with 
frequency as shown in figures 11-16. Indeed, the amplitude and range of the 
evanescent modes increases with frequency (the scaling length of the problem is the 
wavelength). The poor agreement of the approximated solutions in the vicinity of the 
bars is due to the underlying hypothesis of the model. Indeed, since the Miles' 
transfer matrix relates the asymptotic plane wave field on either side of a step, the 
model can describe the far wave field but not the wave field near the bar corners 
where the evanescent modes are essential. 

As mentioned in $4.2, the harmonic content of the experimental wave field was 
investigated. The relative importance of the first harmonic wave amplitude increases 
with the incident wave amplitude as evidenced in figures 11 and 12. A large 
conversion of the fundamental wave into the first harmonic is also obtained as the 
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incident wave amplitude is increased (see figures 13 and 14). This effect was also 
observed in a study of weakly nonlinear waves incident on a bottom made of many 
steps (Belzons et al. 1987). The linear theory cannot, indeed, model this effect. 

Visualization of the flow pathlines over the down-wave corner of the sharp corner 
bar showed that vortices are generated a t  the edge of the steps for low frequency. For 
higher frequency, the vortices are extremely small. Indeed, the vortex diffuses nearly 
instantly into the fluid before being formed. Using rounded corner bars reduces the 
size of vortices. At low frequency the exact numerical computation follows rather 
closely the general trend of the experiments. For the same observation time, the 
barycentric position of the experimental pathline is approximately located on the 
computed one. This is no longer the case a t  high frequency. Moreover, for all 
frequencies, the computed positions of the fluid elements are increasingly scattered 
as the observation time increases. This discrepancy between the computed and 
experimental pathlines which increases with the frequency is inherent to the model. 
Indeed, in the present inviscid model, the boundary conditions exhibit a 
discontinuity for both velocity components a t  the shelf corner. This feature is echoed 
as an uncertainty in the position of the fluid element. I n  the vicinity of the shelf 
corner, the order of magnitude of this uncertainty can be estimated from (16) and 
(17). If the vertical component V, of the velocity is scaled as V, x Af, the horizontal 
component scales as V, x V,h/H, where h is the wavelength. As a result, orders of 
magnitude (in the long-wave limit) of the uncertainty on AX = X( t+At )  -X( t )  and on 
AY = Y( t+At ) -Y ( t )  are to first order in At given by A(AX) /At  x A(g/H,)f and 
A(AY) /At  x Af. Therefore, uncertainties increase with increasing amplitude and 
uncertainty on the y-direction increases with increasing frequency. For large 
amplitude, the vortices are shed into the flow and can be coupled between one step 
and the next one as previously mentioned by Belzons et al. (1988). 

6. Conclusions 
We presented experiments on the propagation of linear and weakly nonlinear 

gravity waves over a rectangular submerged bar. The subtle effects coming from the 
nonlinearity of the wave field and the vorticity of the flow were put into evidence 
owing to flow visualizations as well as to very precise measurements of the reflection 
coefficient and the wave amplitude over the bar. 

Two theoretical models were used to study wave propagation over any smooth 
topography and the results of the models were compared with experimental data. 
The first model, that  we called the ‘exact model’, was derived from Takano (1960) 
and Kirby & Dalrymple’s (1983) work and was extended to any smooth bottom 
topography as in the case of a bed consisting of the superimposition of two sinusoids 
(see Guazzelli, Rey & Belzons 1991). This model takes into account the coupling of 
the evanescent modes which are created a t  the step discontinuity. The second model, 
that we called the ‘approximated model’, was developed by Devillard et al. (1988) 
using the renormalized transfer matrix introduced by Miles (1967). This later model 
can only describe the wave far field and does not take into account the coupling of 
the evanescent modes between two successive steps. 

For a given incident wave amplitude, the vorticity was revealed to  be quite 
sensitive to  the shape of the bar corner. Indeed, the vorticity is significantly reduced 
through a small erosion of the initial sharp corner. A rounded corner can suppress 
vortex shedding even for the greatest amplitude of the incoming wave. Conversely, 
this small erosion of the bar corner has only a small influence on the reflection 
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coefficient as well as the wave amplitude over the bed. Indeed, the study of the 
reflection coefficient showed that weak nonlinearity and weak vorticity have only 
small effects such that the results of both models were in fairly good agreement with 
experimental data. However, in the case of a bed topography comprising a great 
number of bars, we might expect that the nonlinearity and also the shedding of 
vortices into the flow might significantly affect the flow characteristics since vortices 
could be coupled between bars. 

The experimental behaviour of the fundamental wave amplitude over the bed is 
also weakly modified by small nonlinearity and vorticity. However, this behaviour 
demonstrates the importance of the evanescent modes. Only the exact model is in 
good agreement with the experimental data. In  contrast, the approximated model 
fails to give a correct description of the near-field flow. This discrepancy, which is due 
to the underlying hypothesis of the approximated model, was examined in detail in 
this paper. The harmonic component of the experimental wave field was also 
investigated. A large conversion of the fundamental wave into the first harmonic was 
demonstrated for incident wave of increasing amplitude. 

We would like to  thank A. G. Davies and T. O’Hare for helpful discussions on the 
topic. We also would like to thank J. P. Hulin who directed the DEA stage of V. Rey 
at  the origin of preliminary results. This work was partially supported by a 
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